General discrepancy estimates II: the Haar function system

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrepancy estimates on the

In a recent paper Cristea and Tichy introduced several types of discrepancies of point sets on the s-dimensional Sierpiński carpet and proved various relations between these discrepancies. In the present paper we prove a general lower bound for those discrepancies in terms of N , the cardinality of the point set, and we give a probabilistic proof for the existence of point sets with “small” dis...

متن کامل

Permutations of the Haar system

Let us briefly describe the setting in which we are working. D denotes the set of all dyadic intervals contained in the unit interval. π : D → D denotes a permutation of the dyadic intervals. The operator induced by π is determined by the equation TπhI = hπ(I) where hI denotes the L∞-normalised Haar function supported on the dyadic intervall I. The main result of this paper treats general permu...

متن کامل

Discrepancy principle for DSM II

Let Ay = f , A is a linear operator in a Hilbert space H, y ⊥ N(A) := {u : Au = 0}, R(A) := {h : h = Au, u ∈ D(A)} is not closed, ‖fδ − f‖ ≤ δ. Given fδ, one wants to construct uδ such that limδ→0 ‖uδ − y‖ = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are for...

متن کامل

A Remarkable Rearrangement of the Haar System

We introduce a non standard but to our opinion natural order on the initial segments of the Haar system and investigate the isomorphic classi cation of the linear span in Lp of block bases with respect to this order Introduction In DS it was proved that every unconditional basic sequence fxig i in Lp p which is not equivalent to the natural basis of p has the property that for some K and every ...

متن کامل

Range of the Fractional Weak Discrepancy Function

In this paper we describe the range of values that can be taken by the fractional weak discrepancy of a poset and characterize semiorders in terms of these values. In [6], we defined the fractional weak discrepancy wdF (P ) of a poset P = (V,≺) to be the minimum nonnegative k for which there exists a function f : V → R satisfying (1) if a ≺ b then f(a) + 1 ≤ f(b) and (2) if a ‖ b then |f(a) − f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1994

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-67-4-313-322